Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 450, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064110

RESUMO

The mevalonate pathway plays a critical role in multiple cellular processes in both animals and plants. In plants, the products of this pathway impact growth and development, as well as the response to environmental stress. A forward genetic screen of Arabidopsis thaliana using Ca2+-imaging identified mevalonate kinase (MVK) as a critical component of plant purinergic signaling. MVK interacts directly with the plant extracellular ATP (eATP) receptor P2K1 and is phosphorylated by P2K1 in response to eATP. Mutation of P2K1-mediated phosphorylation sites in MVK eliminates the ATP-induced cytoplasmic calcium response, MVK enzymatic activity, and suppresses pathogen defense. The data demonstrate that the plasma membrane associated P2K1 directly impacts plant cellular metabolism by phosphorylation of MVK, a key enzyme in the mevalonate pathway. The results underline the importance of purinergic signaling in plants and the ability of eATP to influence the activity of a key metabolite pathway with global effects on plant metabolism.


Assuntos
Trifosfato de Adenosina/farmacologia , Arabidopsis/metabolismo , Espaço Extracelular/química , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Imunidade Inata/efeitos dos fármacos , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/genética , Mutação/genética , Fenótipo , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais
2.
PLoS One ; 16(12): e0259937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34879068

RESUMO

The microbial and molecular characterization of the ectorhizosphere is an important step towards developing a more complete understanding of how the cultivation of biofuel crops can be undertaken in nutrient poor environments. The ectorhizosphere of Setaria is of particular interest because the plant component of this plant-microbe system is an important agricultural grain crop and a model for biofuel grasses. Importantly, Setaria lends itself to high throughput molecular studies. As such, we have identified important intra- and interspecific microbial and molecular differences in the ectorhizospheres of three geographically distant Setaria italica accessions and their wild ancestor S. viridis. All were grown in a nutrient-poor soil with and without nutrient addition. To assess the contrasting impact of nutrient deficiency observed for two S. italica accessions, we quantitatively evaluated differences in soil organic matter, microbial community, and metabolite profiles. Together, these measurements suggest that rhizosphere priming differs with Setaria accession, which comes from alterations in microbial community abundances, specifically Actinobacteria and Proteobacteria populations. When globally comparing the metabolomic response of Setaria to nutrient addition, plants produced distinctly different metabolic profiles in the leaves and roots. With nutrient addition, increases of nitrogen containing metabolites were significantly higher in plant leaves and roots along with significant increases in tyrosine derived alkaloids, serotonin, and synephrine. Glycerol was also found to be significantly increased in the leaves as well as the ectorhizosphere. These differences provide insight into how C4 grasses adapt to changing nutrient availability in soils or with contrasting fertilization schemas. Gained knowledge could then be utilized in plant enhancement and bioengineering efforts to produce plants with superior traits when grown in nutrient poor soils.


Assuntos
Bactérias/classificação , RNA Ribossômico 16S/genética , Setaria (Planta)/classificação , Setaria (Planta)/crescimento & desenvolvimento , Solo/química , Alcaloides/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Glicerol , Metabolômica , Nitrogênio/metabolismo , Filogenia , Filogeografia , Folhas de Planta/classificação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/classificação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Análise de Sequência de DNA , Setaria (Planta)/metabolismo , Setaria (Planta)/microbiologia , Microbiologia do Solo
3.
mSystems ; 6(5): e0076521, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34519527

RESUMO

Plant roots and the associated rhizosphere constitute a dynamic environment that fosters numerous intra- and interkingdom interactions, including metabolite exchange between plants and soil mediated by root exudates and the rhizosphere microbiome. These interactions affect plant fitness and performance, soil health, and the belowground carbon budget. Exploring and understanding the molecular mechanisms governing ecosystem responses via rhizosphere interactions allow the rational and sustainable design of future ecosystems. However, visualizing the plant root system architecture with spatially resolved root exudate and microbiome profiles along the root in its native state remains an ambitious grand challenge in rhizosphere biology. To address this challenge, we developed a three-dimensional (3D) root cartography platform to accurately visualize molecular and microbial constituents and their interactions in the root-rhizosphere zone.

4.
Front Plant Sci ; 12: 636709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149744

RESUMO

Agricultural cropping systems and pasture comprise one third of the world's arable land and have the potential to draw down a considerable amount of atmospheric CO2 for storage as soil organic carbon (SOC) and improving the soil carbon budget. An improved soil carbon budget serves the dual purpose of promoting soil health, which supports crop productivity, and constituting a pool from which carbon can be converted to recalcitrant forms for long-term storage as a mitigation measure for global warming. In this perspective, we propose the design of crop ideotypes with the dual functionality of being highly productive for the purposes of food, feed, and fuel, while at the same time being able to facilitate higher contribution to soil carbon and improve the below ground ecology. We advocate a holistic approach of the integrated plant-microbe-soil system and suggest that significant improvements in soil carbon storage can be achieved by a three-pronged approach: (1) design plants with an increased root strength to further allocation of carbon belowground; (2) balance the increase in belowground carbon allocation with increased source strength for enhanced photosynthesis and biomass accumulation; and (3) design soil microbial consortia for increased rhizosphere sink strength and plant growth-promoting (PGP) properties.

5.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352693

RESUMO

Drought is the largest stress affecting agricultural crops, resulting in substantial reductions in yield. Plant adaptation to water stress is a complex trait involving changes in hormone signaling, physiology, and morphology. Sorghum (Sorghum bicolor (L.) Moench) is a C4 cereal grass; it is an agricultural staple, and it is particularly drought-tolerant. To better understand drought adaptation strategies, we compared the cytosolic- and organelle-enriched protein profiles of leaves from two Sorghum bicolor genotypes, RTx430 and BTx642, with differing preflowering drought tolerances after 8 weeks of growth under water limitation in the field. In agreement with previous findings, we observed significant drought-induced changes in the abundance of multiple heat shock proteins and dehydrins in both genotypes. Interestingly, our data suggest a larger genotype-specific drought response in protein profiles of organelles, while cytosolic responses are largely similar between genotypes. Organelle-enriched proteins whose abundance significantly changed exclusively in the preflowering drought-tolerant genotype RTx430 upon drought stress suggest multiple mechanisms of drought tolerance. These include an RTx430-specific change in proteins associated with ABA metabolism and signal transduction, Rubisco activation, reactive oxygen species scavenging, flowering time regulation, and epicuticular wax production. We discuss the current understanding of these processes in relation to drought tolerance and their potential implications.


Assuntos
Secas , Flores/fisiologia , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sorghum/fisiologia , Estresse Fisiológico , Frações Subcelulares/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Proteoma/análise , Sorghum/genética
6.
Analyst ; 145(2): 393-401, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31789324

RESUMO

The rhizosphere is arguably the most complex microbial habitat on Earth, comprising an integrated network of plant roots, soil and a highly diverse microbial community (the rhizosphere microbiome). Understanding, predicting and controlling plant-microbe interactions in the rhizosphere will allow us to harness the plant microbiome as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate the effects of climate change by designing ecosystems for long-term soil carbon storage. To this end, it is imperative to develop new molecular approaches with high spatial resolution to capture interactions at the plant-microbe, microbe-microbe, and plant-plant interfaces. In this work, we designed an imaging sample holder that allows integrated surface imaging tools to map the same locations of a plant root-microbe interface with submicron lateral resolutions, providing novel in vivo analysis of root-microbe interactions. Specifically, confocal fluorescence microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used for the first time for the correlative imaging of the Brachypodium distachyon root and its interaction with Pseudomonas SW25, a typical plant growth-promoting soil bacterium. Imaging data suggest that the root surface is inhomogeneous and that the interaction between Pseudomonas and Brachypodium roots was confined to only a few spots along the sampled root segments and that the bacterial attachment spots were enriched in Na- and S-related and high-mass organic species. We conclude that the attachment of the Pseudomonas cells to the root surface is outcompeted by strong root-soil mineral interactions but facilitated by the formation of extracellular polymeric substances (EPS).


Assuntos
Brachypodium/metabolismo , Compostos Orgânicos/metabolismo , Raízes de Plantas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas/metabolismo , Brachypodium/microbiologia , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Raízes de Plantas/microbiologia , Pseudomonas/isolamento & purificação , Infecções por Pseudomonas/metabolismo , Microbiologia do Solo
7.
Sci Rep ; 9(1): 1858, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755686

RESUMO

Predicting phenotypic expression from genomic and environmental information is arguably the greatest challenge in today's biology. Being able to survey genomic content, e.g., as single-nucleotide polymorphism data, within a diverse population and predict the phenotypes of external traits, represents the holy grail across genome-informed disciplines, from personal medicine and nutrition to plant breeding. In the present study, we propose a two-step procedure in bridging the genome to phenome gap where external phenotypes are viewed as emergent properties of internal phenotypes, such as molecular profiles, in interaction with the environment. Using biomass accumulation and shoot-root allometry as external traits in diverse genotypes of the model grass Brachypodium distachyon, we established correlative models between genotypes and metabolite profiles (metabotypes) as internal phenotypes, and between metabotypes and external phenotypes under two contrasting watering regimes. Our results demonstrate the potential for employing metabotypes as an integrator in predicting external phenotypes from genomic information.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Genótipo , Fenótipo , Algoritmos , Biomassa , Brachypodium/genética , Estudos de Associação Genética , Genômica , Espectrometria de Massas , Metabolômica , Raízes de Plantas , Brotos de Planta , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
8.
Plant J ; 96(3): 532-545, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054951

RESUMO

Grass biomass is comprised chiefly of secondary walls that surround fiber and xylem cells. A regulatory network of interacting transcription factors in part regulates cell wall thickening. We identified Brachypodium distachyon SECONDARY WALL ASSOCIATED MYB1 (SWAM1) as a potential regulator of secondary cell wall biosynthesis based on gene expression, phylogeny, and transgenic plant phenotypes. SWAM1 interacts with cellulose and lignin gene promoters with preferential binding to AC-rich sequence motifs commonly found in the promoters of cell wall-related genes. SWAM1 overexpression (SWAM-OE) lines had greater above-ground biomass with only a slight change in flowering time while SWAM1 dominant repressor (SWAM1-DR) plants were severely dwarfed with a striking reduction in lignin of sclerenchyma fibers and stem epidermal cell length. Cellulose, hemicellulose, and lignin genes were significantly down-regulated in SWAM1-DR plants and up-regulated in SWAM1-OE plants. There was no reduction in bioconversion yield in SWAM1-OE lines; however, it was significantly increased for SWAM1-DR samples. Phylogenetic and syntenic analyses strongly suggest that the SWAM1 clade was present in the last common ancestor between eudicots and grasses, but is not in the Brassicaceae. Collectively, these data suggest that SWAM1 is a transcriptional activator of secondary cell wall thickening and biomass accumulation in B. distachyon.


Assuntos
Brachypodium/genética , Proteínas de Plantas/genética , Biomassa , Brachypodium/crescimento & desenvolvimento , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
BMC Plant Biol ; 13: 131, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24024469

RESUMO

BACKGROUND: Cellulose is an integral component of the plant cell wall and accounts for approximately forty percent of total plant biomass but understanding its mechanism of synthesis remains elusive. CELLULOSE SYNTHASE A (CESA) proteins function as catalytic subunits of a rosette-shaped complex that synthesizes cellulose at the plasma membrane. Arabidopsis thaliana and rice (Oryza sativa) secondary wall CESA loss-of-function mutants have weak stems and irregular or thin cell walls. RESULTS: Here, we identify candidates for secondary wall CESAs in Brachypodium distachyon as having similar amino acid sequence and expression to those characterized in A. thaliana, namely CESA4/7/8. To functionally characterize BdCESA4 and BdCESA7, we generated loss-of-function mutants using artificial microRNA constructs, specifically targeting each gene driven by a maize (Zea mays) ubiquitin promoter. Presence of the transgenes reduced BdCESA4 and BdCESA7 transcript abundance, as well as stem area, cell wall thickness of xylem and fibers, and the amount of crystalline cellulose in the cell wall. CONCLUSION: These results suggest BdCESA4 and BdCESA7 play a key role in B. distachyon secondary cell wall biosynthesis.


Assuntos
Brachypodium/enzimologia , Brachypodium/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo
10.
Front Plant Sci ; 3: 74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22639662

RESUMO

Secondary cell wall synthesis occurs in specialized cell types following completion of cell enlargement. By virtue of mechanical strength provided by a wall thickened with cellulose, hemicelluloses, and lignin, these cells can function as water-conducting vessels and provide structural support. Several transcription factor families regulate genes encoding wall synthesis enzymes. Certain NAC and MYB proteins directly bind to the SNBE and AC elements upstream of structural genes and other transcription factors. The most detailed model of this regulatory network is established predominantly for a eudicot, Arabidopsis thaliana. In grasses, both the patterning and the composition of secondary cell walls are distinct from that of eudicots. These differences suggest transcriptional regulation is similarly distinct. Putative rice and maize orthologs of several eudicot cell wall regulators genetically complement mutants of A. thaliana or result in wall defects when constitutively overexpressed; nevertheless, aside from a maize, ZmMYB31, and a switchgrass protein, PvMYB4, function has not been tested in a grass. Similar to the seminal work conducted in A. thaliana, gene expression profiling in maize, rice, and other grasses implicates additional genes as regulators. Characterization of these genes will continue to elucidate the relationship between the transcription regulatory networks of eudicots and grasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA